16 research outputs found

    Caprin-1, a novel Cyr61-interacting protein, promotes osteosarcoma tumor growth and lung metastasis in mice

    Full text link
    Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. More than 30% of patients develop lung metastasis, which is the leading cause of mortality. Recently, the extracellular matrix protein Cyr61 has been recognized as a malignancy promoting protein in OS mouse model with prognostic potential in human OS. In this study, we aimed at the identification of novel Cyr61-interacting proteins. Here we report that Cyr61 associates with Caprin-1, and confocal microscopy showed that stable ectopic expression of Caprin-1 leads to the formation of stress granules containing Caprin-1 and Cyr61, confers resistance to cisplatin-induced apoptosis, and resulted in constitutive phosphorylation of Akt and ERK1/2. Importantly, ectopic expression of Caprin-1 dramatically enhanced primary tumor growth, remarkably increased lung metastatic load in a SCID intratibial OS mouse model, and decreased significantly (p<0.0018) the survival of the mice. Although Caprin-1 expression, evaluated with a tissue microarray including samples from 59 OS patients, failed to be an independent predictor for the patients' outcome in this limited cohort of patients, increased Caprin-1 expression indicated a tendency to shortened overall survival, and more strikingly, Cyr61/Caprin-1 co-expression was associated with worse survival than that observed for patients with tumors expressing either Cyr61 or Caprin-1 alone or none of these proteins. The findings imply that Caprin-1 may have a metastasis promoting role in OS and show that through resistance to apoptosis and via the activation of Akt and ERK1/2 pathways, Caprin-1 is significantly involved in the development of OS metastasis

    Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice

    No full text
    Immunization is increasingly recognized as a suitable therapeutic avenue for the treatment of neurological diseases such as Alzheimer's disease and other tauopathies. Tau is a key molecular player in these conditions and therefore represents an attractive target for passive immunization approaches. We performed such an approach in two independent tau transgenic mouse models of tauopathy, K369I tau transgenic K3 and P301L tau transgenic pR5 mice. The antibodies we used were either specific for full-length tau or tau phosphorylated at serine 404 (pS404), a residue that forms part of the paired helical filament (PHF)-1 phosphoepitope that characterizes tau neurofibrillary tangles in tauopathies. Although both pS404 antibodies had a similar affinity, they differed in isotype, and only passive immunization with the IgG2a/κ pS404-specific antibody resulted in a lower tangle burden and reduced phosphorylation of tau at the PHF1 epitope in K3 mice. In pR5 mice, the same antibody led to a reduced phosphorylation of the pS422 and PHF1 epitopes of tau. In addition, histological sections of the hippocampal dentate gyrus of the immunized pR5 mice displayed reduced pS422 staining intensities. These results show that passive immunization targeting tau can modulate aspects of tau pathology in tau transgenic mouse models, in an antibody isotype-specific manner

    Prognostic value and in vitro biological relevance of Neuropilin 1 and Neuropilin 2 in osteosarcoma

    Full text link
    Neoadjuvant chemotherapy in osteosarcoma increased the long-term survival of patients with localized disease considerably but metastasizing osteosarcoma remained largely treatment resistant. Neuropilins, transmembrane glycoproteins, are important receptors for VEGF dependent hyper-vascularization in tumor angiogenesis and their aberrant expression promotes tumorigenesis and metastasis in many solid tumors. Our analysis of Neuropilin-1 (NRP1) and Neuropilin-2 (NRP2) immunostaining in a tissue microarray of 66 osteosarcoma patients identified NRP2 as an indicator of poor overall, metastasis-free and progression free survival while NRP1 had no predictive value. Patients with tumors that expressed NRP2 in the absence of NRP1 had a significantly worse prognosis than NRP1(-)/NRP2(-), NRP1(+) or NRP1(+)/NRP2(+) tumors. Moreover, patients with overt metastases and with NRP2-positive primary tumors had a significantly shorter survival rate than patients with metastases but NRP2-negative tumors. Furthermore, the expression of both NRP1 and NRP2 in osteosarcoma cell lines correlated to a variable degree with the metastatic potential of the respective cell line. To address the functional relevance of Neuropilins for VEGF signaling we used shRNA mediated down-regulation and blocking antibodies of NRP1 and NRP2 in the metastatic 143B and HuO9-M132 cell lines. In 143B cells, VEGFA signaling monitored by AKT phosphorylation was more inhibited by blocking of NRP1, whereas in HuO9-M132 cells NRP2 blocking was more effective indicating that NRP1 and NRP2 can substitute each other in the functional interaction with VEGFR1. Altogether, these data point to NRP2 as a powerful prognostic marker in osteosarcoma and together with NRP1 as a novel target for tumor-suppressive therapy

    Reduced Latency in the Metastatic Niche Contributes to the More Aggressive Phenotype of LM8 Compared to Dunn Osteosarcoma Cells

    No full text
    Metastasis is the major cause of death of osteosarcoma patients and its diagnosis remains difficult. In preclinical studies, however, forced expression of reporter genes in osteosarcoma cells has remarkably improved the detection of micrometastases and, consequently, the quality of the studies. We recently showed that Dunn cells equipped with a lacZ reporter gene disseminated from subcutaneous primary tumors as frequently as their highly metastatic subline LM8, but only LM8 cells grew to macrometastases. In the present time-course study, tail-vein-injected Dunn and LM8 cells settled within 24 h at the same frequency in the lung, liver, and kidney of mice. Furthermore, Dunn cells also grew to macrometastases, but, compared to LM8, with a delay of two weeks in lung and one week in liver and kidney tissue, consistent with prolonged survival of the mice. Dunn- and LM8-cell-derived ovary and spine metastases occurred less frequently. In vitro, Dunn cells showed less invasiveness and stronger contact inhibition and intercellular adhesion than LM8 cells and several cancer- and dormancy-related genes were differentially expressed. In conclusion, Dunn cells, compared to LM8, have a similar capability but a longer latency to form macrometastases and provide an interesting new experimental system to study tumor cell dormancy

    Sphingosine Kinase 2 Potentiates Amyloid Deposition but Protects against Hippocampal Volume Loss and Demyelination in a Mouse Model of Alzheimer\u27s Disease

    Get PDF
    Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer\u27s disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid β (Aβ) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aβ-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aβ content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aβ burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aβ, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aβ and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer\u27s disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aβ formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aβ-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aβ burden. Our findings support a model in which Aβ-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aβ concentration or plaque density

    Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons

    No full text
    The culturing of primary neurons represents a central pillar of neuroscience research. Primary neurons are derived directly from brain tissue and recapitulate key aspects of neuronal development in an in vitro setting. Unlike neural stem cells, primary neurons do not divide; thus, initial attachment of cells to a suitable substrate is critical. Commonly used polylysine substrates can suffer from batch variability owing to their polymeric nature. Herein, we report the use of chemically well-defined, self-assembling tetrapeptides as substrates for primary neuronal culture. These water-soluble peptides assemble into fibers which facilitate adhesion and development of primary neurons, their long-term survival (>40 days), synaptic maturation, and electrical activity. Furthermore, these substrates are permissive toward neuronal transfection and transduction which, coupled with their uniformity and reproducible nature, make them suitable for a wide variety of applications in neuroscience

    Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons

    No full text
    The culturing of primary neurons represents a central pillar of neuroscience research. Primary neurons are derived directly from brain tissue and recapitulate key aspects of neuronal development in an in vitro setting. Unlike neural stem cells, primary neurons do not divide; thus, initial attachment of cells to a suitable substrate is critical. Commonly used polylysine substrates can suffer from batch variability owing to their polymeric nature. Herein, we report the use of chemically well-defined, self-assembling tetrapeptides as substrates for primary neuronal culture. These water-soluble peptides assemble into fibers which facilitate adhesion and development of primary neurons, their long-term survival (>40 days), synaptic maturation, and electrical activity. Furthermore, these substrates are permissive toward neuronal transfection and transduction which, coupled with their uniformity and reproducible nature, make them suitable for a wide variety of applications in neuroscience

    Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons

    No full text
    The culturing of primary neurons represents a central pillar of neuroscience research. Primary neurons are derived directly from brain tissue and recapitulate key aspects of neuronal development in an in vitro setting. Unlike neural stem cells, primary neurons do not divide; thus, initial attachment of cells to a suitable substrate is critical. Commonly used polylysine substrates can suffer from batch variability owing to their polymeric nature. Herein, we report the use of chemically well-defined, self-assembling tetrapeptides as substrates for primary neuronal culture. These water-soluble peptides assemble into fibers which facilitate adhesion and development of primary neurons, their long-term survival (>40 days), synaptic maturation, and electrical activity. Furthermore, these substrates are permissive toward neuronal transfection and transduction which, coupled with their uniformity and reproducible nature, make them suitable for a wide variety of applications in neuroscience

    Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons

    No full text
    The culturing of primary neurons represents a central pillar of neuroscience research. Primary neurons are derived directly from brain tissue and recapitulate key aspects of neuronal development in an in vitro setting. Unlike neural stem cells, primary neurons do not divide; thus, initial attachment of cells to a suitable substrate is critical. Commonly used polylysine substrates can suffer from batch variability owing to their polymeric nature. Herein, we report the use of chemically well-defined, self-assembling tetrapeptides as substrates for primary neuronal culture. These water-soluble peptides assemble into fibers which facilitate adhesion and development of primary neurons, their long-term survival (>40 days), synaptic maturation, and electrical activity. Furthermore, these substrates are permissive toward neuronal transfection and transduction which, coupled with their uniformity and reproducible nature, make them suitable for a wide variety of applications in neuroscience
    corecore